最近,有大部分客户反映,在一些比较大的项目中,由于网络传输速度等的限制,通常需要将项目分成好多个组,然后再进行组与组的连接并进行集中管理。也就是所说的多局域网集中管理。那么,网络摄像机如何解决在多个局域网中进行集中管理呢?
当然,服务器式的解决方式很容易解决这个问题,摄像机的录像,日常监控,直接在本地局域网内完成。视频监控摄像机同时也连接到服务器,然后总部,上级领导如果需要查看图像,连接服务器查看即可。
目前,智能分析技术的行业特性并不明显,实际应用效果也自然不出彩。因此,进行智能分析技术的行业化开发势在必行,原因主要有如下几点。
第一,智能分析技术的应用与高清技术的普及分不开。
智能分析的前提是识别画面能满足识别条件的最小像素。当目标像素越大,识别越清晰,分析准确度也更高。简而言之,智能分析功能的使用都是在图像识别清晰的前提下进行处理过滤。高清前端产品相对于标清而言,在相同焦长及视场距离条件下,其单位面积的有效像素点更多,也就是能为安防视频监控的视频分析处理运算提供更清晰的目标信息,从而提高数据准确性。无论是针对智能前置的分析模式还是后端平台分析处理,高清画质都是提高智能分析准确性的重要因素。因此,视频监控高清化的推动程度也将影响智能分析技术的发展应用。然而,目前高清视频监控系统的应用并未普及,只在部分行业进行使用,而在不同行业不同视频监控系统和画质条件下,同一款智能分析产品同时应用于多个不同行业、不同方案中,自然会实现差异程度较大的智能分析效果,而通过高清系统应用行业进行智能分析技术的级别功能区分,则会明确智能分析技术对于不同行业的开发方向,使其有的放矢,提高智能分析技术的适应性与准确性。
第二,智能分析技术本身存在一定的技术难点。
实际环境中光照变化、目标运动复杂性、遮挡、目标与背景颜色相似、背景杂乱等都会增加智能分析算法设计的难度。当应用环境背景复杂,光照变化引起目标颜色与背景颜色的变化时,分析软件可能造成虚假检测与错误跟踪,这种光照变化对算法的影响是无法完全消除的。此外,当视频图像中运动目标被部分或完全遮挡,又或是多个目标相互遮挡时,目标信息的缺失会影响智能分析软件在分析跟踪时的稳定性。另目前的智能分析系统一方面要保证大量信息分析跟踪的实时性,选择计算量小的分析算法,同时为了使分析算法对复杂背景、光照变化和遮挡等情况有较强的适应性,则要选择复杂的分析运算方式,而若要同时满足两者,存在一定困难。由此,当智能分析技术应用在各个行业时,若能进行应用环境的区分和运算方法的简化,实现单一应用,为每个行业进行特定开发,并嵌入专门的算法,或只针对某一种或简单几种事件进行分析,比如重要出入口的人员跟踪,系统只需嵌入分析及跟踪算法等,则会简化智能分析技术的运算方式,而智能分析技术也会更贴合行业需求特点,进行更为精准的分析运算。
|